Predicting Corporate Bankruptcy

Heather Dempsey Sacred Heart University

Outline

- Introduction
 - Purpose
- Literature review
- Hypothesis
- Methodology
- Data
 - Variables
- Results
- Conclusion

Introduction

- Since 2005 x number of companies have gone bankrupt. It's a costly economic event. In addition to the firm itself losses, bankruptcy hurts shareholders, employees, bondholders, suppliers and even real estate value.
- Purpose: To determine whether or not the likelihood of success or failure of a publicly traded firm can be predicted effectively. If so this model could be used internally to identify early warning signs.
- With this model CFO's, corporate finance teams & financial analysts could take corrective action to prevent failure
- Alternate uses are pricing credit swaps and debt evaluation

Hypothesis

Hypothesis

 The probability of a firm going bankrupt can be forecast from key financial ratios found on the income, cash flow statements and balance sheet of the firm

Research questions

- What contributes the most to corporate failure?
- How to reduce chances of bankruptcy?
- What are other uses?
- Can early signs prevent the worst outcome?

Literature Review

 Michele Modina and Filomena Pietrovito in "Rating, capital structure and bankruptcy prediction" find capital structure is the most important economic variable in firms defaulting.

Methodology

• Since I wish to capture the probability of success or failure, I chose Logit to predict an outcome of 1 or 0. To be interpreted as 1 = default

- Having a binary outcome violates the assumption of linearity
- A logistic transformation makes it possible to model a nonlinear association in a linear way
- I use logit to forecast 3 months ahead the odds of default

$$\ln(odds) = \ln\left(\frac{P}{1-p}\right) = \text{the logit}(p)$$

Methodology- The Model

b = probability of bankruptcy

$$logit(b_{it}) = ln\left(\frac{b_{it}}{1 - b_{it}}\right) = \alpha + \beta X_{it-1}$$

where X is a matrix of independent variables lagged one period. Taking the inverse of the logit function in a nonlinear association to regress in a linear form.

$$Z = \alpha + \beta X_{it-1}$$

$$f(b_{it})^{-1} = f(z) = \frac{1}{e^{-z}}$$

where, f(z) is between 0 and 1 and indicates the probability of bankruptcy in 3 months.

$$f(b_{it})^{-1} = \frac{1}{1 + e^{-(\alpha + \beta X_{it-1})}}$$

Data

Historical data:

- 2005-2017
- Panel data structure
- Quarterly periodicity

Data sources:

- Compustat
- CRSP
- BankruptcyData.com

In-sample

• Q1 2005 to Q4 2016

Out-of-sample - Forecast

• Q1 2017

Binary dependent variable:

• Bankruptcy 1 if filed; 0 if no default

Independent variables:

- Cash flow ratio
- Quick ratio
- Debt ratio
- Profitability
- Size

Dummy independent variables:

- Failed to file
- Restatement
- Year to control for economic climate
- 10 industry sectors to normalize data

Variable description

Dependent variable	Symbol	Description	Source
Bankrupt	b	Probability a firm will default1 ranges from 0 to 1	Compustat
Independent variables	Symbol	Description	
Cash flow ratio	С	Cash flow from operations/current liabilities	Compustat
Quick ratio	q	(Current assets – inventories) / current liabilities	Compustat
Debt ratio	r	Total liabilities/total assets	Compustat
Profitability	р	Return on equity = net income/ shareholders' equity	Compustat
Size (market cap)	S	Total number of shares × share price	CRSP & Compustat
Dummy variables		Description	
Failed to file statements	d_1	Dummy variable coded 1 for firms that failed to file	CRSP & Compustat
on time		financial statements on time; 0 otherwise	
Restatement	d_2	Dummy variable coded 1 for firms that restated	CRSP & Compustat
		financial statements; 0 otherwise	

Variable description- Control for year specific economic climate

		,
Dummy variables		Control for year specific economic climate
Year 2005	d_3	Dummy coded 1 when year is 2005; 0 if not in year
Year 2006	d_4	Dummy coded 1 when year is 2006; 0 if not in year
Year 2007	d_5	Dummy coded 1 when year is 2007; 0 if not in year
Year 2008	d_6	Dummy coded 1 when year is 2008; 0 if not in year
Year 2009	d_7	Dummy coded 1 when year is 2009; 0 if not in year
Year 2010	d_8	Dummy coded 1 when year is 2010; 0 if not in year
Year 2011	d_9	Dummy coded 1 when year is 2011; 0 if not in year
Year 2012	d_{10}	Dummy coded 1 when year is 2012; 0 if not in year
Year 2013	d_{11}	Dummy coded 1 when year is 2013; 0 if not in year
Year 2014	d_{12}	Dummy coded 1 when year is 2014; 0 if not in year
Year 2015	d_{13}	Dummy coded 1 when year is 2015; 0 if not in year
Year 2016	d_{14}	Dummy coded 1 when year is 2016; 0 if not in year
Year 2017	d_{15}	Dummy coded 1 when year is 2017; 0 if not in year

Variable description- Control for industry

Industry dummy variable description

Industry		Control for the effect of industry sector	
Basic industries	d_{16}	Dummy variable coded 1 for firms in the basic industries; 0 otherwise	CRSP
Capital goods	d_{17}	Dummy variable coded 1 for firms in the capital goods industry; 0 otherwise	CRSP
Consumer durables	d_{18}	Dummy variable coded 1 for firms in the consumer durables industry; 0 otherwise	CRSP
Consumer non- durables	d_{19}	Dummy variable coded 1 for firms in the consumer non- durables industry; 0 otherwise	CRSP
Consumer services	d_{20}	Dummy variable coded 1 for firms in the consumer service industry; 0 otherwise	CRSP
Energy	d_{11}	Dummy variable coded 1 for firms in the energy sector; 0 otherwise	CRSP
Finance	d_{12}	Dummy variable coded 1 for firms in the finance industry; 0 otherwise	CRSP
Healthcare	d_{13}	Dummy variable coded 1 for firms in the healthcare industry; 0 otherwise	CRSP
Technology	d_{14}	Dummy variable coded 1 for firms in the technology sector; 0 otherwise	CRSP
Transportation	d_{15}	Dummy variable coded 1 for firms in the transportation industry; 0 otherwise	CRSP

Expected Coefficient Signs

Expected coefficient signs of non-dichotomous variables

Variable	Expected sign	Explanation
Cash flow ratio	(+/-)	Cash flow of one or greater will enable the firm to meet its obligation, reducing default risk, less than one will increase the chances of default
Quick ratio	(+/-)	A value of one or greater will reduce default probability, otherwise increases probability of default
Debt ratio	(+/-)	Lower ratio will have a negative effect; a higher ratio will increase probability of default
Profitability	(-)	Return on equity should decrease the probability of default
Size (market cap)	(-)	Larger firms have more resources, access to credit and default less on loans

Results

 Firms relying primarily on debt financing have a higher probability of default

 Cash flow and profitability have a negative effect on the likelihood of default

Conclusion

 Predicting bankruptcy accurately will give CFO's and the finance department the ability to make changes in the areas that need it the most.

 To be used as a tool to enhance or correct capital structure practices and positively influence the financial health of the firm